

Python Programming Fundamentals

Assignment

Scenario
Your puzzle-loving (and insufferable) Uncle has long claimed that Sudoku puzzles are the
peak of the puzzle solving art, and no more true a test of intelligence exists. Incensed, you
have decided to prove him wrong and create a simple program that can solve Sudoku
puzzles with ease, to demonstrate that he doesn’t need to waste any more of his time.

So what is a Sudoku, other than a “denial of service attack on human intellect”?. The Sudoku
is a Latin Square puzzle that first appeared in French newspapers in the late 19th century.
Appearing as a 9x9 square containing 9 smaller 3x3 squares, the goal of a Sudoku is to
ensure every row, column, and smaller 3x3 square contains each of the numbers 1 - 9
exactly once. Typically, Sudoku puzzles start with a number of squares already containing
numbers, clues from which the solver must use to divine the correct placement of every
other number until all 81 squares are filled. Below is an example of an unsolved puzzle:

Task
In the included attachment is a number of Sudoku puzzles, each represented as nine
nine-character strings, each on a separate line. Blank spaces are represented with the
number 0, spaces with a number are represented by that number.

Your task is to develop a short Python program that is capable of solving them correctly,
outputting the completed puzzle in a separate text document, formatted like so:

You are not required to extend the program with a GUI or an interface for a human to solve
the puzzle, although if this is a problem that appeals to you the library PyGame is a great
place to start.

Your program should be able to read a text document of an arbitrary length, formatted as the
one attached, and for each puzzle, output a correct solution.

There are several ways to solve a Sudoku puzzle, chief among them backtracking (a brute
force method of solving them). You are not required to use this method and can do whatever
you prefer - treat it as an exact cover problem, or constraint propagation for example. There
are a lot of potential avenues to solutions presented online. The technique you use to solve
the puzzles doesn’t matter, only the results will be tested.

A solution that has been copied and pasted off of the internet will not be a pass.

Your program will be required to pass the test puzzles provided to you, as well as a number
of puzzles hidden from you that will only be used to test your submission. This is in order to
prevent students hard-coding a solution.

You may wish to test your program with more puzzles than those we’ve provided to you. You
can find several, as well as answers to test your solutions online. Websudoku and
Sudoku.com are both good sites to start with.

Submission
Submit your finished Python code as a single zipped package. All the modules you use need
to be contained within this zip. You don’t need to submit any of your test cases.

Blank Puzzles
The raw text file can be found in the assignment zip, but is reproduced below to give you an
idea of how the input is formatted.

The minimum possible score for the assignment is 0. The maximum possible score is 10,
and the pass mark is a 7 out of 10.

Criterion Below Standard At Standard Above Standard

White space and
following PEP 8
Style Guide

Code isn’t spaced
out, crammed in, is
hard to read. No
consistent styling
throughout the code

(0 points)

Some effort has
been made to make
code readable.
Styled consistently
throughout. Follows
some PEP 8
guidelines.

(1 point)

Code follows PEP8
guidelines

(2 points)

Comments No comments in the
code, or the
comments don’t
adequately explain
what the code is
doing, or there are
too many comments
and they obfuscate
the code

(0 points)

Comments explain
function behaviour

(1 point)

Comments are
sufficient, without
being obfuscating.
In line with PEP8
guidelines.

(2 points)

File Handling Submission doesn’t
read from a file.

Submission doesn’t
write to a file

(0 points)

Submission reads
from a file, or writes
to a file, but not
both.
Submission file
handling is unsafe.
Submission writes to
the file in an
incorrect format

(1 point)

Code correctly
reads and writes to
files, and handles
files in a safe
manner

(2 points)

Problem Solving Code fails to solve
even the most basic
sudoku puzzles
within a reasonable
time frame

(0 points)

Code correctly
solves half of the
basic puzzles

Code recognises
when it can’t solve a
puzzle, and provides
feedback

(1 point)

Code can solve all
of the basic puzzles,
quickly.

(2 puzzles)

Problem Solving
(Advanced)

Code fails to solve
harder problems
within a reasonable
time frame

(0 points)

Code can correctly
solve the
intermediate
difficulty puzzles

(1 point)

Code can correctly
solve the harder
puzzles, or
recognise when no
solution is possible

(2 points)

